

Packed with Features to Ensure Accuracy in Battery Measurements

O Circuit design friendly for impedance measurements that minimize errors between channels (Effect: 0.01\% f.s.*)
O For OCV measurement, internal resistance measurement, and external potential measurement of battery cells
O Measure battery modules up to 60 V DC
O Switch between voltmeter and battery tester while testing
O Built-in short-circuit protection fuse for each channel

Multi-channel Battery Testing

Combine the SW1001 or SW1002 with a battery testing instrument to measure a battery cell's OCV (open circuit voltage), internal resistance, reaction resistance at low frequency, Cole-Cole plot, and external potential on multiple channels.

SW1001

3 Slots
2-wire: 66 channels; 4-wire: 33 channels;
4-terminal pair: 18 channels
(Max. number of channels)

SW1002

12 Slots
2-wire: 264 channels; 4-wire: 132 channels;
4-terminal pair: 72 channels
(Max. number of channels)

OCV Measurements

High-precision OCV measurements

PRECISION DC VOLTMETER

 DM7276

Internal Resistance Measurements

1 kHz high-speed, highprecision internal resistance measurements
Module weld resistance measurements

BATTERY TESTER BT3562

Impedance Measurements

Reaction resistance and electrolyte resistance measurements Cole-Cole plots
BATTERY IMPEDANCE METER BT4560

CHEMICAL IMPEDANCE ANALYZER IM3590

External Potential Measurement

Highly reliable measurement of external potential between electrode and case, using the contact check function

PRECISION DC VOLTMETER DM7276

Connect Up to Two Measuring Instruments with Different Functions

Switch between two types of measuring instruments to perform a variety of measurements.*

Configuration
 Example
 Switch between PRECISION DC VOLTMETER DM7276 and BATTERY IMPEDANCE METER BT4560

Cell OCV measurements External potential measurements between electrode and case

Cell internal resistance measurements
Cole-Cole plot measurements

* One 2-wire module and one 4-wire module or 4-terminal pair (BNC) module can be used together (see page 7). Only one channel can be measured at a time. Two modules cannot be used at the same time to measure multiple channels.

Battery Measurement Supported by Exclusive PC Application

Use the free, downloadable PC application to perform various measurements easily.

OCV Measurement function

- swi001Appl - Basic messurement								
File(F)	Mode(M)	(M) $\operatorname{set}(\mathrm{S})$	Tools(T) L	Language(L) Help(H)				
		$\begin{aligned} & \mathrm{V} \\ & {[\mathrm{~V}]} \end{aligned}$		V 1st data [V]		$\begin{aligned} & \mathrm{dV} \\ & {[\mathrm{mV}]} \end{aligned}$	$\begin{aligned} & \mathrm{dV} \\ & {[\mathrm{mV} / \text { day }]} \end{aligned}$	$\begin{aligned} & \mathrm{dV} / \text { Last } 1 \mathrm{hr} \\ & {[\mathrm{mV} / \mathrm{hr}]} \end{aligned}$
,	1	+03.7829	$15 \mathrm{E}+00$		782930	-0.015	-28.799	-1.201
	2	+03.78291	$15 \mathrm{E}+00$. 782932	-0.017	-32.638	-1.361

Enjoy basic functions as well as a newly added dedicated OCV measurement function.
This allows you to measure initial voltage, voltage drops, voltage drop rate (mV/day), and the latest voltage drop rate ($\mathrm{mV} /$ hour) in addition to OCV measurement values. A judgment function is also included, making it easy to determine which battery cell is experiencing aging defects.

Logging function

Use in combination with supported measurement instruments to perform logging measurements (Interval setting: 1 second to 60 minutes) for up to 264 channels. The judgment function makes it easy to determine the channel on which an abnormality occurred.

Multi-channel Cole-Cole plot measurements

Use in combination with the BT4560 or the IM3590 to perform multi-channel Cole-Cole plot measurements.
Allows testing to be performed efficiently for R\&D and quality assurance.

[^0][^1]
Circuit Design for Impedance Measurements

The effect on the detection signal is reduced by canceling the magnetic flux of the AC measurement current and separating the source from the sense.

Error in Measurement Values between Channels/Slots Due to Use of Switching System

Example of measurement with BT3562
Measurement conditions: $3 \mathrm{~m} \Omega$ range, 0Ω measurement, after zero adjustment by direct connection

Example of measurement with BT4560
Measurement conditions: RX function, $3 \mathrm{~m} \Omega$ range, $1 \mathrm{kHz}, 0 \Omega$ measurement, after zero adjustment by direct connection

From the measurement results ...
Little error between when a switch is used or not used. (direct connection of measurement instrument)
Little error between channels.
Little error between slots.

Reliable measurement with little effect from eddy currents

Example of Connection Cables and Supported Measurement Instruments

Choose from Two Types of Multiplexer Modules

MULTIPLEXER MODULE SW9001

This module supports 2 -wire/4-wire configurations. Channel switching can be performed in 11 ms (excluding communication, command processing time, and contact bounce).

Wiring Method	No. of Channels	Signal Type		Used Signals	
2-wire	22	Sense		CH 1 to CH 22	
4-wire	11	Source		CH 1 to CH 11	
		Sen		CH 12 to CH 22	
Example of Connected Measuring Instruments			Terminal		Connect Cable
PRECISION DC VOLTMETER DM7276			TERMINAL 1		L4930
BATTERY HiTESTER BT3562			TERMINAL 2		L2108

MULTIPLEXER MODULE SW9002

This module supports 4-terminal pair configuration for use in combination with BT4560 and IM3590. 2-wire measurement is also possible (Sense only). Channel switching can be performed in 11 ms (excluding communication, command processing time, and contact bounce).

Wiring Method	No. of Channels	Signal Type	Used Signals
2-wire	6	Sense	Sense CH 1 to CH 6
4-terminal pair	6	Source	Source CH 1 to CH 6
		Return	Return CH 1 to CH 6
		Sense	Sense CH 1 to CH 6

Example of Connected Measurement Instruments	Terminal	Connection Cable
PRECISION DC VOLTMETER DM7276	TERMINAL 1	L4930
BATTERY IMPEDANCE METER BT4560	TERMINAL 3	L2004

Examples of Switching Measurement Time (Use in combination with SW1002 to measure the actual time for scan measurements.) * * Communication with SW1002 via USB.

Module	Measuring Instrument	Function	Measurement Speed	No. of Channels	Delay Time	Scan Time (All Channels)	Conditions
SW9001	DM7276	V	0.02 PLC	22	0 ms	0.45 s (Approx. $20 \mathrm{~ms} / \mathrm{CH}$)	Communication with DM7276 via USB Contact check OFF
			FAST	22	0 ms	0.85 s (Approx. $39 \mathrm{~ms} / \mathrm{CH}$)	
			MEDIUM	22	0 ms	4.9 s (Approx. $223 \mathrm{~ms} / \mathrm{CH}$)	
	BT3562	$\Omega \vee$	EX. FAST	11	10 ms	0.45 s (Approx. $41 \mathrm{~ms} / \mathrm{CH})$	Communication with BT3562 via RS-232C (38,400 bps)
			MEDIUM	11	10 ms	1.1 s (Approx. $100 \mathrm{~ms} / \mathrm{CH}$)	
SW9002	BT4560	RX	FAST	6	0 ms	1.0 s (Approx. $167 \mathrm{~ms} / \mathrm{CH}$)	Communication with BT4560 via USB (9600 bps) Measurement frequency: 1 kHz
			MEDIUM	6	0 ms	1.2 s (Approx. $200 \mathrm{~ms} / \mathrm{CH}$)	

Control Interface/Useful Functions

Channel switching is controlled by the communication interface. LAN/USB/RS-232C interfaces are supported.

Rear Interfaces

Communication I/F: LAN/USB/RS-232C (HOST) Transmission of communication commands to measurement instruments: RS-232C (INSTRUMENT) For scanner control: EXT. I/O*1

EXT. I/O Signal Table

Pin	Signal Name	I/O	Function	Logic
1	SCAN	IN	Start/advance scan	Edge
2	(Reserved)	IN	-	-
3	ISO_5V	-	Isolated power +5 V (-5 V) output	-
4	CLOSE	OUT	Complete channel closing	Pulse
5	(Reserved)	OUT	-	-
6	SCAN RESET	IN	Reset scan operation	Edge
7	(Reserved)	IN	-	-
8	ISO_COM	-	Isolated power common	-
9	(Reserved)	OUT	-	-

*19-pin D-sub (Female \#4-40 screw), Input: Photocoupler isolated non-voltage contact input, Output: Photocoupler isolated open drain output

Communication Command Transmission Function Reduces the Number of PC Ports Needed

Normally, PC control requires two ports: one communication port for switching and one for the measuring instrument.
By using the communication command transmission function on the SW1001 and SW1002, the switch mainframe can transfer control commands from the PC to the measuring instrument (and responses can be received from the device). This allows you to reduce the number of communication ports used on the measuring instrument.*2
*2 The measuring instrument is connected with the RS-232C. Only one instrument is supported (one port).

Control Command Transmission from PC
Command transfered to Measuring Instrument

Scan Function

This function switches between channels in order based on the scan list registered in advance.
The switch mainframe and the EXT. I/O of the measuring instrument are connected. With the scan function, channel switching and trigger measurement can be synced for continuous scanning. *3
*3 To obtain the measurement value, use the data output function or the memory function on the measuring instruments.

Scan List Example
List up to Slot 2/Channel 11 (4-wire)

No.	Slot/CH
1	1/1
2	1/2
3	$1 / 34$
\vdots	
21	2/10
22	2/11

Use the PC App

Relay Open/Close Count Function

The number of times each relay opens/ closes can be confirmed on the PC application. This allows you to estimate the service life of a relay.

50-pin D-sub

50-pin D-sub (Male \#4-40 screw UNC)	Pin	Signa		Pin	Signa		Pin	Signa	
17	17	Shiel		33	CH11	H	50	CH11	L
$\left(\left(\begin{array}{ccc} 17 & 50 \\ 0 & 3 & 0 \end{array}\right)\right.$	16	CH10	H	32	CH9	L	49	CH10	L
$\bigcirc 0$	15	CH9	H	31	CH8	H	48	CH8	L
000	14	CH7	H	30	CH6	L	47	CH7	L
$\bigcirc 00$	13	CH6	H	29	CH5	H	46	CH5	L
000	12	CH4	H	28	CH3	L	45	CH 4	L
0000	11	CH3	H	27	CH2	H	44	CH 2	L
000	10	CH 1	H	26	Shield		43	CH1	L
$1 \begin{array}{lll}0 & 0 & 0 \\ 0 & 0\end{array}$	9	Shiel		25	CH22	H	42	CH 22	L
000	8	CH21	H	24	CH 20	L	41	CH 21	L
000	7	CH 20	H	23	CH19	H	40	CH19	L
$\bigcirc{ }_{0}^{0} 0$	6	CH18	H	22	CH17	L	39	CH18	L
$\bigcirc 0$	5	CH17	H	21	CH16	H	38	CH 16	L
$\bigcirc 00$	4	CH15	H	20	CH14	L	37	CH15	L
000	3	CH14	H	19	CH13	H	36	CH13	L
$\bigcirc 0$	2	CH 12	H	18	Shield		35	CH 12	L
$\left(\begin{array}{llll} \\ \hline & 18 & 34\end{array}\right)$	1	Shiel		-	-		34	Shiel	

With a 4 -wire system, channel n and channel $\mathrm{n}+11$ are Source/Sense pairs.

37-pin D-sub (Male \#4-40 screw UNC)

SW9002 Connector signal table

Pin	Signal			Pin	Signal		
19	Return	CH6	L	37	Source	CH6	L
18	Return	CH5	L	36	Source	CH5	L
17	Return	CH4	L	35	Source	CH 4	L
16	Return	CH3	L	34	Source	CH3	L
15	Return	CH 2	L	33	Source	CH2	L
14	Return	CH 1	L	32	Source	CH1	L
13	Source	CH 1	H	31	Return	CH1	H
12	Source	CH 2	H	30	Return	CH 2	H
11	Source	CH3	H	29	Return	CH3	H
10	Source	CH 4	H	28	Return	CH4	H
9	Source	CH5	H	27	Return	CH5	H
8	Source	CH6	H	26	Return	CH6	H
7		eld		25	Sense	CH1	L
6	Sense	CH1	H	24	Sense	CH2	L
5	Sense	CH2	H	23	Sense	CH3	L
4	Sense	CH3	H	22	Sense	CH4	L
3	Sense	CH4	H	21	Sense	CH5	L
2	Sense	CH5	H	20	Sense	CH6	L
1	Sense	CH6	H				

When a 2-wire system is used, only Sense CH 1 to CH 6 are enabled.

Please prepare measurement cables (multiplexer module - measurement target). Connectors For SW9001: DD-50SF-N, For SW9002: DC-37SF-N (Manufactured by Japan Aviation Electronics Industry, Ltd.)

Effects when Used in Combination with a Measurement Instrument

Combined measurement accuracy = Accuracy of measurement instrument + Combined effects

SW9001

BT3562, BT3563 (connected with L2108)		
Range	Effect	Conditions and Remarks
$\mathrm{R} 3 \mathrm{~m} \Omega$	$\pm 0.1 \%$ f.s.	-
$\mathrm{R} 30 \mathrm{~m} \Omega$ to 300Ω	$\pm 0.03 \%$ f.s.	-
$\mathrm{R} 3000 \mathrm{~N}^{*}$	$\begin{aligned} & \pm 3.0 \% \text { rdg. } \\ & \pm 0.03 \% \text { f.s. } \end{aligned}$	Measurement abnormality detection not possible
Entire V range	$\pm 5 \mu \mathrm{~V}$ *2	After stabilization of temperature in usage environment Within 1 minute of contact closing
3561 (connected with L2108)		
Range	Effect	Conditions and Remarks
Entire R range	$\pm 0.03 \%$ f.s.	-
Entire V range	$\pm 5 \mu \mathrm{~V}$ *2	After stabilization of temperature in usage environment Within 1 minute of contact closing
DM7275, DM7276 (connected with L4930)		
Range	Effect	Conditions and Remarks
Entire V range	$\pm 7 \mu \mathrm{~V}$ *2	After stabilization of temperature in usage environment Within 1 minute of contact closing

List of possible combinations when using two measuring instruments together
One 2-wire module + one 4-wire module, or one 2-wire module + one 4-terminal pair module can be used together.

1st Module	2nd Module
DM7275 or DM7276	BT3562 or 3561
	BT4560
	IM3590

Combinations of two 2-wire modules, two 4-wire modules, or one 4-wire module + one 4-terminal pair module are not possible.

SW9002

BT4560 (connected with L2004)					
Range	Effect				Conditions and Remarks
	Freq. Range 0.1 Hz to 100 Hz		Freq. Range 110 Hz to 1050 Hz		
$3 \mathrm{~m} \Omega \mathrm{R}$	$\pm 0.05 \%$ f.s.		$\pm 0.1 \%$ f.s.		-
$3 \mathrm{~m} \Omega \mathrm{X}$	$\pm 0.1 \%$ f.s.		$\pm 1.0 \%$ f.s.		-
$10 \mathrm{~m} \Omega \mathrm{R}$	$\pm 0.015 \%$ f.s.		$\pm 0.03 \%$ f.s.		-
$10 \mathrm{~m} \Omega \mathrm{X}$	$\pm 0.03 \%$ f.s.		$\pm 0.3 \%$ f.s.		-
$100 \mathrm{~m} \Omega \mathrm{R}$	$\pm 0.01 \%$ f.s.		$\pm 0.01 \%$ f.s.		-
$100 \mathrm{~m} \Omega \mathrm{X}$	$\pm 0.015 \%$ f.s.		$\pm 0.03 \% \text { f.s. }$		-
Entire V range	$\pm 5 \mu \mathrm{~V}$ *2				After stabilization of temperature in usage environment Within 1 minute of contact closing
IM3590 *3 (connected with L2004)					
Range		Effect		Conditions and Remarks	
$100 \mathrm{~m} \Omega$ to 10	$\begin{aligned} & \text { IM3590 measurement } \\ & \text { accuracy } \\ & \times 1 \\ & \hline \end{aligned}$			DC, 0.001 Hz to 10.000 kHz	
100Ω to $10 \mathrm{k} \Omega$	```IM3590 measurement accuracy \(\times 3\)```			DC, 0.001 Hz to 10.000 kHz Impedance upper limit $10 \mathrm{k} \Omega$	

DM7275, DM7276 (connected with L4930)		
Range	Effect	Conditions and Remarks
Entire V range	$\pm 7 \mu \mathrm{~V} * 2$	After stabilization of temperature in usage environment Within 1 minute of contact closing

[^2]SWITCH MAINFRAME SW1001, SWITCH MAINFRAME SW1002 Specifications*1

Slots	3 slots (SW1001), 12 slots (SW1002)		Channel switching, wiring method, scan function, communication command
Supported modules	MULTIPLEXER MODULE SW9001 (2-wire/4-wire) MULTIPLEXER MODULE SW9002 (4-terminal pair)		transmission, channel delay, shield switching
		Display	Power LED, Error LED, Remote LED
		Compliance standards	Safety: EN61010, EMC: EN61326 Class A
Connectible instruments	Max. 2 units 2 -wire x $1+4$-wire x 1 , or 2 -wire x $1+4$-terminal pair x 1	Operating temperature and humidity range	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right), 80 \% \mathrm{RH}$ or less (no condensation)
Analog bus terminal	TERMINAL 1: Banana terminal (2-wire) TERMINAL 2: Banana terminal (4-wire) TERMINAL 3: BNC terminal (4-terminal pair)	Storage temperature and humidity range	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right), 80 \% \mathrm{RH}$ or less (no condensation)
		Operating environment	Indoors, Pollution Degree 2, altitude up to 2000 m (6562.20 ft)
		Power supply	100 to $240 \mathrm{~V} \mathrm{AC} / 30 \mathrm{VA}(50 / 60 \mathrm{~Hz})$
Maximum input voltage	$60 \mathrm{~V} \mathrm{DC}^{*} 2,30 \mathrm{~V} \mathrm{AC} \mathrm{rms}$,42.4 V peak	Dimensions and mass	Approx. $215 \mathrm{~mm}(8.46 \mathrm{in}) \mathrm{W} \times 132 \mathrm{~mm}(5.20 \mathrm{in}) \mathrm{H} \times 420 \mathrm{~mm}$ (16.54 in) D, Approx. 3.7 kg (130.5 oz) (SW1001) Approx. 430 mm (16.93 in) W x $132 \mathrm{~mm}(5.20 \mathrm{in}) \mathrm{H} \times 420 \mathrm{~mm}$ (16.54 in) D, Approx. 6.0 kg (211.6 oz) (SW1002)
Maximum rated voltage to ground	60 V DC		
Communication I/F	LAN, USB, RS-232C (for host, for measurement instruments)	Accessories	Power cord x 1 , instruction manual x 1 , usage precautions x 1 , USB driver CD x 1
EXT. I/O	SCAN input, SCAN_RESET input, CLOSE output (to control scanner)		

MULTIPLEXER MODULE SW9001 Specifications *1

Wiring method	2-wire or 4-wire
No. of channels	22 channels (2-wire) / 11 channels (4-wire)
Contact method	Armature relays
Channel switching time	11 ms (excluding measurement time)
Max. allowable voltage	60 V DC, 30 V AC rms, 42.4 V peak
Max. allowable current	$1 \mathrm{~A} \mathrm{DC}$,
Max. allowable power	30 W (resistive load)
Maximum rated voltage to ground	60 V DC
Offset voltage *3	$5 \mu \mathrm{~V}$ (TERMINAL 1, TERMINAL 2 Sense)
Initial path resistance	Less than 1.5Ω (when using TERMINAL 1) Less than 0.7Ω (when using TERMINAL 2, 3)
Insulation resistance	$1 \mathrm{G} \Omega$ or more between High-Low channels (at 60 V DC)
Contact life (reference value)	No load: 50 million times 30 V capacitive load ($1.2 \mu \mathrm{~F}+60 \Omega, 500 \mathrm{~mA}$ peak): 10 million times
Dimensions and mass	Approx. 25.5 mm (1.00 in) W x 110 mm (4.33 in) H x 257 mm (10.12 in) D, Approx. 210 g (7.4 oz)
Accessories	Instruction manual x 1

MULTIPLEXER MODULE SW9002 Specifications *1

Wiring method	4-terminal pair (6-wire) or 2-wire
No. of channels	6 channels (4-terminal pair) / 6 channels (2-wire)
Contact method	Armature relays
Channel switching time	11 ms (excluding measurement time)
Max. allowable voltage	$60 \mathrm{~V} \mathrm{DC} ,30 \mathrm{~V} \mathrm{AC} \mathrm{rms}$,42.4 V peak
Max. allowable current	1 A DC, 1 A AC rms (Sense) 2 A DC, 2 A AC rms (Source, Return)
Max. allowable power	30 W (resistive load)
Maximum rated voltage to ground	60 V DC
Offset voltage *3	$5 \mu \mathrm{~V}$ (TERMINAL 1, TERMINAL 2 Sense)
Initial path resistance	Less than 1.5Ω (when using TERMINAL 1) Less than 1.0Ω (when using TERMINAL 2, 3)
Insulation resistance	$1 \mathrm{G} \Omega$ or more between High-Low channels (at 60 V DC)
Contact life (reference value)	No load: 50 million times
Dimensions and mass	Approx. 25.5 mm (1.00 in) W x 110 mm (4.33 in) H x 257 mm (10.12 in) D, Approx. 196 g (6.9 oz)
Accessories	Instruction manual x 1

*2 Cannot connect to battery packs in excess of 60 V DC.
*1 Product warranty period: 3 years (excluding relays and fuses)
*3 The offset value is from within 1 minute of closing the channel. This value is also taken when the temperature of the usage environment is sufficiently stable, and when the instrument has acclimated to that temperature.

Lineup

SWITCH MAINFRAME SW1001
Model No. (Order Code) : SW1001

SWITCH MAINFRAME SW1002
Model No. (Order Code) : SW1002

Optional Modules

MULTIPLEXER MODULE SW9001

MULTIPLEXER MODULE SW9002

[^3]
[^0]: Supported measuring instruments: PRECISION DC VOLTMETER DM7275, DM7276 BATTERY TESTER BT3562, BT3563, 3561 BATTERY IMPEDANCE METER BT4560 CHEMICAL IMPEDANCE ANALYZER IM3590 RESISTANCE METER RM3545

[^1]: Save measurement data in CSV file format.
 Create save files for each channel.
 -RS-232C/USB/LAN supported (matching the communication function of the connected device).

[^2]: *1 Measurement anomaly detection function not available in the 3000Ω range of the BT3562 and BT3563.
 *2 The effect of voltage measurement includes the offset voltage of the basic specifications.
 *3 The effect when used in combination with the IM3590 is a reference value. It is not a guaranteed value.

[^3]: Module not included with the switch mainframe. Modules must be purchased separately.

